Extracting Word Sequence Correspondences with Support Vector Machines
نویسندگان
چکیده
This paper proposes a learning and extracting method of word sequence correspondences from non-aligned parallel corpora with Support Vector Machines, which have high ability of the generalization, rarely cause over-fit for training samples and can learn dependencies of features by using a kernel function. Our method uses features for the translation model which use the translation dictionary, the number of words, part-of-speech, constituent words and neighbor words. Experiment results in which Japanese and English parallel corpora are used archived 81.1 % precision rate and 69.0 % recall rate of the extracted word sequence correspondences. This demonstrates that our method could reduce the cost for making translation dictionaries.
منابع مشابه
A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملVisual Speech Recognition Using Support Vector Machines
In this paper we propose a visual speech recognition network based on Support Vector Machines. Each word of the dictionary is described as a temporal sequence of visemes. Each viseme is described by a support vector machine, and the temporal character of speech is modeled by integrating the support vector machines as nodes into a Viterbi decoding lattice. Experiments conducted on a small visual...
متن کاملSentence and word alignment using Support Vector Machines
Sentence and word alignment are prerequisite tasks for any system concerning statistical machine translation. Although they seem very different, both sentence and word alignments require approximately the same features to discriminate between positive and negative examples of alignments. We present a solution that can align the sentences and the words of a parallel corpus using support vector m...
متن کاملRemote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملAn Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification
Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...
متن کامل